Mathematics and Datasets¶
Gerd Duscher
04/16/2020
Please download this example and run it as a notebook by scrolling to the bottom of this page
[1]:
# Ensure python 3 compatibility:
from __future__ import division, print_function, absolute_import, unicode_literals
%matplotlib widget
import numpy as np
import sys
sys.path.insert(0,'../../')
import sidpy
print(sidpy.__version__)
0.12.3
Creating an Image Dataset¶
First, we make a sidpy dataset from a numpy array, with all the information to plot it.
[2]:
t = np.linspace(0, 4*np.pi, 512)
x = np.array(np.zeros((512,512)) + 4*abs(np.cos(t)[:, np.newaxis]) + np.random.normal(0, 0.2, size=(512, 512)))
dset = sidpy.Dataset.from_array(x)
dset.data_type = 'image'
dset.units = 'counts'
dset.quantity = 'intensity'
dset.title = 'random'
dset.set_dimension(0, sidpy.Dimension(np.arange(dset.shape[0])*.02, 'x'))
dset.x.dimension_type = 'spatial'
dset.x.units = 'nm'
dset.x.quantity = 'distance'
dset.set_dimension(1, sidpy.Dimension(np.arange(dset.shape[1])*.02, 'y'))
dset.y.dimension_type = 'spatial'
dset.y.units = 'nm'
dset.y.quantity = 'distance'
view = dset.plot(scale_bar=True)
We have the capability to store the variance of our data within the sidpy.Dataset by either adding an additional attribute variance using sidpy.Dataset.from_array(x, variance=var)
or by directly saving our variance array in sidpy.Dataset.variance
[3]:
x_var = np.array(np.random.normal(1, 0.1, size=(512, 512))+ abs(np.sin(t)[np.newaxis,:]))
dset.variance = x_var
dset.plot(scale_bar=True);
Simple Arithmetic¶
First we subtract the min of this image, and we want to have the rest of the information unchanged
So we use the minimum function and do a subtraction.
[4]:
dset = dset - dset.min()
view = dset.plot(scale_bar=True)
Plotting a Complex Image¶
What if the data form a complex image?
Because, we do not want to start all over again, we will use the like_data
function, which copies all metadata onto the new dataset.
The resulting plot consists of two images, which share however the axes, try it out and zoom into one image.
Another feature of the plot
function is that you can add any matplotlib keywords and values to the plot.
[5]:
x_c = x + np.random.normal(1, 0.2, size=(512, 512)) *1j
dset_complex = dset.like_data(x_c, 'complex image')
view = dset_complex.plot(figsize=(10,4), scale_bar=True)
Plotting a spectrum¶
A spectrum can also easily be populated with the apropriete metadata.
[4]:
x = np.random.normal(3, 2.5, size=(1024))
x_var = np.random.normal(10, 0.2, size=(1024))
dset = sidpy.Dataset.from_array(x, variance=x_var)
# dataset metadata
dset.data_type = 'spectrum'
dset.title = 'random'
dset.quantity = 'intensity'
dset.units = 'a.u.'
# dimension with metadata
scale = .5
offset = 390
dset.set_dimension(0, sidpy.Dimension(np.arange(dset.shape[0])*scale+offset, 'energy'))
dset.dim_0.dimension_type = 'spectral'
dset.energy.units = 'eV'
dset.energy.quantity = 'energy'
view = dset.plot()
Creating an Image-Stack DataSet¶
In the following we will make a numpy which resembles a stack of images
In the sidpy Dataset
will set the data_type
to image_stack
for the plotting routine to know how to plot this dataset.
The dimensions have to contain at least two spatial
dimensions and one that is identifiable as a stack dimension (‘stack, ‘frame’, ‘time’). First we make a stack of images
[5]:
x = np.random.normal(3, 2.5, size=(25, 512, 512))
x_var = np.random.normal(10, 2.5, size=(25, 512, 512))
dset = sidpy.Dataset.from_array(x)
dset.data_type = 'image_stack'
dset.units = 'counts'
dset.quantity = 'intensity'
dset.variance = x_var
dset.set_dimension(0, sidpy.Dimension(np.arange(dset.shape[0]), 'frame'))
dset.frame.dimension_type = 'temporal'
dset.set_dimension(1, sidpy.Dimension(np.arange(dset.shape[1])*.02, 'x'))
dset.x.dimension_type = 'spatial'
dset.x.units = 'nm'
dset.x.quantity = 'distance'
dset.set_dimension(2, sidpy.Dimension(np.arange(dset.shape[2])*.02, 'y'))
dset.y.dimension_type = 'spatial'
dset.y.units = 'nm'
dset.y.quantity = 'distance'
Plotting the Dataset¶
Please note that the scroll wheel will move you through the stack, also the slider and the play button will let you navigate through this image stack.
Zoom to an area and let it play!
Click on the Average
button and then click on it again.
[7]:
view = dset.plot(scale_bar=False)
The kwargs dictionary is used to plot the image stack in TEM style with scale bar
[4]:
kwargs = {'scale_bar': True, 'cmap': 'hot'} # or maby 'cmap': 'gray'
view = dset.plot(verbose=True, **kwargs)
Shape of dataset is: (25, 512, 512)
3D dataset: DataType.IMAGE_STACK
Plot Dataset as Spectral Image¶
We need to change the data_type of the dataset to spectral_image
and the dimension_type of one dimension to spectral
.
Now the plot function plots it as a spectrum image.
Select the spectrum with the mouse (left click).
[6]:
dset.data_type = 'spectral_image'
dset.set_dimension(0, sidpy.Dimension(np.arange(dset.shape[0]),'spectrum'))
dset.spectrum.dimension_type = 'spectral'
#dset[0,0,:] *=20
kwargs = {'scale_bar': True, 'cmap': 'hot'}
view = dset.plot(**kwargs)
# Note:
# Double click in right panel will zoom to full scale
We make the selection more visible by setting the binning of the spectra selection.
The binning avrages over the binning box.
Run the code-cell below and look in the plot above
.
[7]:
dset.view.set_bin([5, 5])
The axes (and figure) instances of matplotlib can be accessed throught the view
attribute of the sidpy dataset.
The code cell below will draw a red square lattice on the plot above
[8]:
x, y = np.mgrid[0:501:100, 0:501:100] + 5
dset.view.axes[0].scatter(x, y, color='red');
The plotting routine can also be used independently.
Please note, that a reference (here the variable view
) must be maintained for interactive plotting.
[9]:
kwargs = {'scale_bar': True, 'cmap': 'hot', }
dset.set_dimension(0, sidpy.Dimension(np.arange(dset.shape[0]),'frame'))
dset.frame.dimension_type = 'temporal'
view = sidpy.viz.dataset_viz.ImageStackVisualizer(dset, **kwargs)
In the same way as above, we can plot the dataset as an image.
Please note, that we did not have to set the data_type
of the dataset.
[10]:
print(dset.shape)
kwargs = {'scale_bar': True, 'cmap': 'hot'}
view = sidpy.viz.dataset_viz.ImageVisualizer(dset, image_number=5, **kwargs)
(25, 512, 512)
4-Dimensional Dataset¶
A 4-dimensional dataset can be visualized as easily.
[15]:
data = np.random.random([5,5,10,10])
for i in range(5):
for j in range(5):
data[i,j]+=(i+j)
#kwargs=(scan_x=0, scan_y=1)
dataset = sidpy.Dataset.from_array(data)
dataset.data_type='Image_4d'
dataset.plot();
We have the following parameters to influence the plot:
scan_x, scan_y
image_4d_x, image_4d_y Those parameters are supposed to be integers givin the dimension of the dataset.
In the plot above where none of these parameters are specified we assume slowest to fastest change of dimensions.
But below, we switch scanned and image dimensions of th 4d dataset.
[16]:
dataset.plot(scan_x=3,scan_y=2, image_4d_x=1, image_4d_y=0);
Plotting of Point Cloud¶
Point Clouds can be represented by the 2D sidpy Dataset
with one point_cloud
dimension and one spectral
dimension or by the 3D sidpy Dataset
with one more channel
dimension.
A point_cloud
dimension represents point number, while the real points coordinates must be stored in the sidpy.Dataset.point_cloud
. To customize spatial units and quantities for specific coordinates, simply extend the sidpy.Dataset.point_cloud
dictionary with the relevant values.
2D¶
[3]:
data = np.random.normal(3, 2.5, size=(20,10))
data_var = np.random.normal(10, 2.5, size=(20,10))
coordinates = np.random.uniform(8, 10, (20, 2))#np.random.rand(20,2)+10
dset = sidpy.Dataset.from_array(data, coordinates = coordinates)
dset.data_type = 'point_cloud'
dset.variance = data_var
dset.point_cloud['spacial_units'] = 'um'
dset.point_cloud['quantity'] = 'Distance'
dset.set_dimension(0, sidpy.Dimension(np.arange(data.shape[0]),
name='point number',
quantity='Point number',
dimension_type='point_cloud'))
dset.set_dimension(1, sidpy.Dimension(np.arange(data.shape[1]),
name='X',
units='a.u.',
quantity='X',
dimension_type='spectral'))
dset.units = 'a.u.'
dset.quantity = 'Intensity'
view = dset.plot(scale_bar=True);
3D¶
[4]:
data = np.random.normal(3, 2.5, size=(200,3,10))
data_var = np.random.normal(10, 2.5, size=(200,3,10))
coordinates = np.random.rand(200,2)+7
dset = sidpy.Dataset.from_array(data, coordinates = coordinates)
dset.data_type = 'point_cloud'
dset.variance = data_var
dset.set_dimension(0, sidpy.Dimension(np.arange(data.shape[0]),
name='point number',
quantity='Point number',
dimension_type='point_cloud'))
dset.set_dimension(1, sidpy.Dimension(np.arange(data.shape[1]),
name='cycle',
quantity='Cycle',
dimension_type='channel'))
dset.set_dimension(2, sidpy.Dimension(np.arange(data.shape[2]),
name='X',
units='a.u.',
quantity='X',
dimension_type='spectral'))
dset.units = 'a.u.'
dset.quantity = 'Intensity'
view = dset.plot(scale_bar=True);
Point cloud with base_image¶
To visualize a point cloud within the real field of view, you can use the dset.plot function by providing an additional attribute called base_name. In this case, you can call the function as follows: dset.plot(base_name=image_dataset)
, where image_dataset should be an instance of sidpy.Dataset
with a data_type set to ‘IMAGE’.
[5]:
#image_dataset initializtion. image_dataset represents field of view
t = np.linspace(0, 6*np.pi, 512)
im_data = 4*abs(np.cos(t)[:, np.newaxis])+ 8*abs(np.cos(t)[np.newaxis,:]) + np.random.normal(0, 0.2, size=(512, 512))
image_dataset = sidpy.Dataset.from_array(im_data, datatype='image', units='counts', quantity='intensity')
image_dataset.title = 'random'
image_dataset.set_dimension(0, sidpy.Dimension(np.linspace(7, 8, image_dataset.shape[0]), 'x'))
image_dataset.x.dimension_type = 'spatial'
image_dataset.x.units = 'um'
image_dataset.x.quantity = 'distance'
image_dataset.set_dimension(1, sidpy.Dimension(np.linspace(7, 8, image_dataset.shape[1]), 'y'))
image_dataset.y.dimension_type = 'spatial'
image_dataset.y.units = 'um'
image_dataset.y.quantity = 'distance'
[6]:
view = dset.plot(base_image = image_dataset, cmap='gray', scale_bar=True);
[ ]:
[ ]: