Source code for sidpy.viz.plot_utils.misc

# -*- coding: utf-8 -*-
"""
Utilities for generating static image and line plots of near-publishable quality

Created on Thu May 05 13:29:12 2016

@author: Suhas Somnath, Chris R. Smith
"""
from __future__ import division, print_function, absolute_import, unicode_literals
import os
import sys
from numbers import Number
import numpy as np
import matplotlib as mpl
from matplotlib import ticker as mtick, pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
from sidpy.viz.plot_utils.cmap import default_cmap

if sys.version_info.major == 3:
    unicode = str


[docs] def reset_plot_params(): """ Resets the plot parameters to matplotlib default values Adapted from: https://stackoverflow.com/questions/26413185/how-to-recover-matplotlib-defaults-after-setting-stylesheet """ mpl.rcParams.update(mpl.rcParamsDefault) # Also resetting ipython inline parameters inline_rc = dict(mpl.rcParams) mpl.rcParams.update(inline_rc)
[docs] def use_nice_plot_params(): """ Resets default plot parameters such as figure size, font sizes etc. to values better suited for scientific publications """ # mpl.rcParams.keys() # gets all allowable keys # mpl.rc('figure', figsize=(5.5, 5)) mpl.rc('lines', linewidth=2) mpl.rc('axes', labelsize=16, titlesize=16) mpl.rc('figure', titlesize=20) mpl.rc('font', size=14) # global font size mpl.rc('legend', fontsize=16, fancybox=True) mpl.rc('xtick.major', size=6) mpl.rc('xtick.minor', size=4)
# mpl.rcParams['xtick.major.size'] = 6
[docs] def set_tick_font_size(axes, font_size): """ Sets the font size of the ticks in the provided axes Parameters ---------- axes : matplotlib.pyplot.axis object or list of axis objects axes to set font sizes font_size : unigned int Font size """ assert isinstance(font_size, Number) font_size = max(1, int(font_size)) def __set_axis_tick(axis): """ Sets the font sizes to the x and y axis in the given axis object Parameters ---------- axis : matplotlib.axes.Axes object axis to set font sizes """ for tick in axis.xaxis.get_major_ticks(): tick.label1.set_fontsize(font_size) for tick in axis.yaxis.get_major_ticks(): tick.label1.set_fontsize(font_size) mesg = 'axes must either be a matplotlib.axes.Axes object or an iterable containing such objects' if hasattr(axes, '__iter__'): for axis in axes: assert isinstance(axis, mpl.axes.Axes), mesg __set_axis_tick(axis) else: assert isinstance(axes, mpl.axes.Axes), mesg __set_axis_tick(axes)
[docs] def use_scientific_ticks(axis, is_x=True, formatting='%.2e'): """ Makes the desired axis use scientific notation for its tick labels. This is applicable only for 1D plots at the moment. Parameters ---------- axis : matplotlib.pyplot.axis object Axis handle is_x : bool, optional. Default = True If set to true, scientific notation will be applied only to the X axis. If set to False, scientific notation will be applied only to the Y axis. formatting : str / unicode, optional. Default = 2 digits of precision Precision for the tick labels """ if not isinstance(axis, mpl.axes.Axes): raise TypeError('axis must be a matplotlib.axes.Axes object') if not isinstance(is_x, bool): raise TypeError('is_x should be a boolean to avoid confusion') if not isinstance(formatting, (str, unicode)): raise TypeError('formatting must be a string') if is_x: ax_hand = axis.xaxis else: ax_hand = axis.yaxis ax_hand.set_major_formatter(mtick.FormatStrFormatter(formatting))
[docs] def make_scalar_mappable(vmin, vmax, cmap=None): """ Creates a scalar mappable object that can be used to create a colorbar for non-image (e.g. - line) plots Parameters ---------- vmin : Number Minimum value for colorbar vmax : Number Maximum value for colorbar cmap : colormap object Colormap object to use Returns ------- sm : matplotlib.pyplot.cm.ScalarMappable object The object that can used to create a colorbar via plt.colorbar(sm) Adapted from: https://stackoverflow.com/questions/8342549/matplotlib-add-colorbar-to-a-sequence-of-line-plots """ assert isinstance(vmin, Number), 'vmin should be a number' assert isinstance(vmax, Number), 'vmax should be a number' assert vmin < vmax, 'vmin must be less than vmax' if cmap is None: cmap = default_cmap else: assert isinstance(cmap, (mpl.colors.Colormap, str, unicode)) sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=vmin, vmax=vmax)) # fake up the array of the scalar mappable sm._A = [] return sm
[docs] def get_plot_grid_size(num_plots, fewer_rows=True): """ Returns the number of rows and columns ideal for visualizing multiple (identical) plots within a single figure Parameters ---------- num_plots : uint Number of identical subplots within a figure fewer_rows : bool, optional. Default = True Set to True if the grid should be short and wide or False for tall and narrow Returns ------- nrows : uint Number of rows ncols : uint Number of columns """ assert isinstance(num_plots, Number), 'num_plots must be a number' # force integer: num_plots = int(num_plots) if num_plots < 1: raise ValueError('num_plots was less than 0') if fewer_rows: nrows = int(np.floor(np.sqrt(num_plots))) ncols = int(np.ceil(num_plots / nrows)) else: ncols = int(np.floor(np.sqrt(num_plots))) nrows = int(np.ceil(num_plots / ncols)) return nrows, ncols
[docs] def export_fig_data(fig, filename, include_images=False): """ Export the data of all plots in the figure `fig` to a plain text file. Parameters ---------- fig : matplotlib.figure.Figure The figure containing the data to be exported filename : str The filename of the output text file include_images : bool Should images in the figure also be exported Returns ------- """ # Get the data from the figure axes = fig.get_axes() axes_dict = dict() for ax in axes: ax_dict = dict() ims = ax.get_images() if len(ims) != 0 and include_images: im_dict = dict() for im in ims: # Image data im_lab = im.get_label() im_dict['data'] = im.get_array().data # X-Axis x_ax = ax.get_xaxis() x_lab = x_ax.label.get_label() if x_lab == '': x_lab = 'X' im_dict[x_lab] = x_ax.get_data_interval() # Y-Axis y_ax = ax.get_yaxis() y_lab = y_ax.label.get_label() if y_lab == '': y_lab = 'Y' im_dict[y_lab] = y_ax.get_data_interval() ax_dict['Images'] = {im_lab: im_dict} lines = ax.get_lines() if len(lines) != 0: line_dict = dict() xlab = ax.get_xlabel() ylab = ax.get_ylabel() if xlab == '': xlab = 'X Data' if ylab == '': ylab = 'Y Data' for line in lines: line_dict[line.get_label()] = {xlab: line.get_xdata(), ylab: line.get_ydata()} ax_dict['Lines'] = line_dict if ax_dict != dict(): axes_dict[ax.get_title()] = ax_dict ''' Now that we have the data from the figure, we need to write it to file. ''' filename = os.path.abspath(filename) basename, ext = os.path.splitext(filename) folder, _ = os.path.split(basename) spacer = r'**********************************************\n' data_file = open(filename, 'w') data_file.write(fig.get_label() + '\n') data_file.write('\n') for ax_lab, ax in axes_dict.items(): data_file.write('Axis: {} \n'.format(ax_lab)) if 'Images' not in ax: continue for im_lab, im in ax['Images'].items(): data_file.write('Image: {} \n'.format(im_lab)) data_file.write('\n') im_data = im.pop('data') for row in im_data: row.tofile(data_file, sep='\t', format='%s') data_file.write('\n') data_file.write('\n') for key, val in im.items(): data_file.write(key + '\n') val.tofile(data_file, sep='\n', format='%s') data_file.write('\n') data_file.write(spacer) if 'Lines' not in ax: continue for line_lab, line_dict in ax['Lines'].items(): data_file.write('Line: {} \n'.format(line_lab)) data_file.write('\n') dim1, dim2 = line_dict.keys() data_file.write('{} \t {} \n'.format(dim1, dim2)) for val1, val2 in zip(line_dict[dim1], line_dict[dim2]): data_file.write('{} \t {} \n'.format(str(val1), str(val2))) data_file.write(spacer) data_file.write(spacer) data_file.close()